

International conference

6-9 JUNE 2023 Espace Prouvé, Nancy, France

Daily exposure estimation from measurements of repetitive shock vibration

Frédéric Maître, Maël Amar

Summary

- 1. Introduction
 - **1.1.** Context
 - 1.2. Problem
 - 1.3. Objective
- 2. Material and methods
 - 2.1. Assault riffle
 - 2.2. Nail gun
 - 2.3. Impact wrench
- 3. Results
- 4. Discussion and conclusions

1. Introduction

- 1.1. Context
 - CRAMIF and INRS are public institutes for heath and safety at work
 - The evaluation of workers' exposure to hand-arm vibration is mandatory
 - Measurements have to be carried out using the ISO 5349-1 standard
 - Daily vibration exposure: $A(8) = a_{hv} \cdot \sqrt{\frac{T}{T_0}}$ $(m \cdot s^{-2})$

where

 a_{hv} : vibration total value emitted by the machine $(m \cdot s^{-2})$

T: total daily duration of exposure of the operator (s)

T₀: 28800 s (8 hours)

1. Introduction

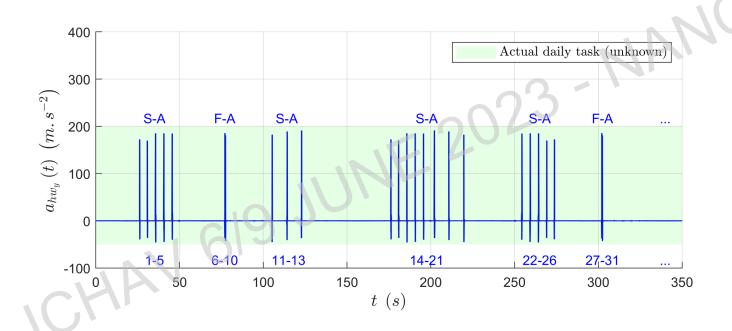
- 1.2. Problem
 - Some hand-held power tools generate repeated shocks of high amplitudes
 - Measurements are rarely performed over the whole working day
 - a_{hv} and T are often biased
 - The estimation of A(8) may not be representative of the real exposure

1. Introduction

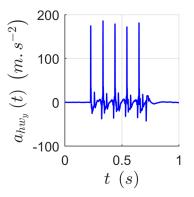
• 1.3. Objective

duction		
3. Objective		FRAN
Compare 2 methods for the	e estimation of $A(8)$	WC, L
	Conventional method	Alternative method
Measured (sample)	$a_{hv_{sample}}$	$A(8)_{sample} \ R_{sample}$
Available information (whole working task)	$T_{estimate}$	$R_{estimate}$
$A(8)_{estimate}$	$a_{hv_{sample}} \cdot \sqrt{rac{T_{estimate}}{T_0}}$	$A(8)_{sample} \cdot \sqrt{\frac{R_{estimate}}{R_{sample}}}$

- 2.1. Assault riffle
 - Zastava M70 AB2
 - 7.62 mm caliber
 - Accelerometer mounted on the body of the weapon

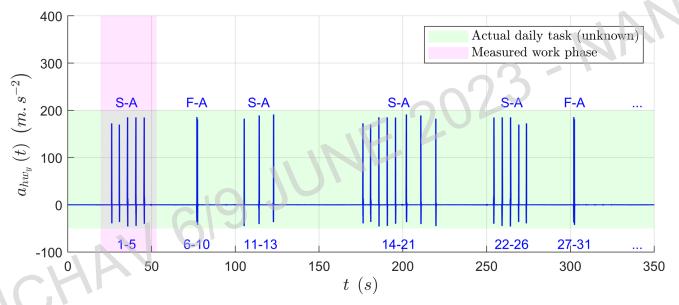






• 2.1. Assault riffle

Semi-Automatic (S-A) 1 round


Full-Automatic (F-A) 5 rounds

• 2.1. Assault riffle

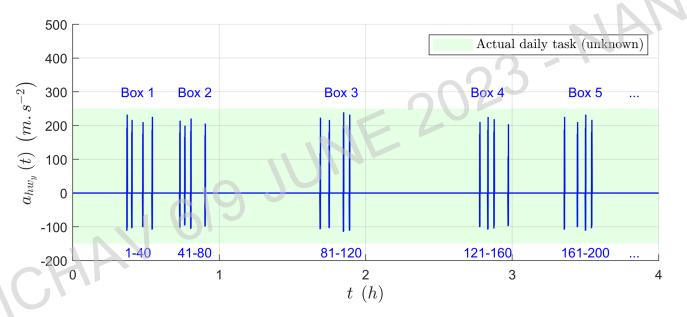
Available information
$T_{estimate}$
$R_{estimate}$

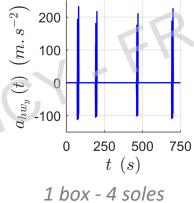


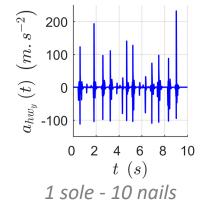
• 2.1. Assault riffle

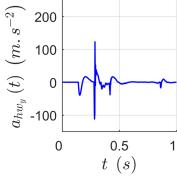
iterial and	l method	S				
2.1. Assault	riffle			, NC	I-FRA	MCL
Cor	nventional me	thod	73	Alternati	ve method	
$a_{hv_{sample}}$ $(m. s^{-2})$	$T_{estimate}$ (s)	$A(8)_{estimate}$ $(m. s^{-2})$	$R_{estimate}$ $(-)$	R_{sample} $(-)$	$A(8)_{sample}$ $(m. s^{-2})$	$A(8)_{estimate}$ $(m. s^{-2})$
2.6	5400	1.1	300	5	0.090	0.7

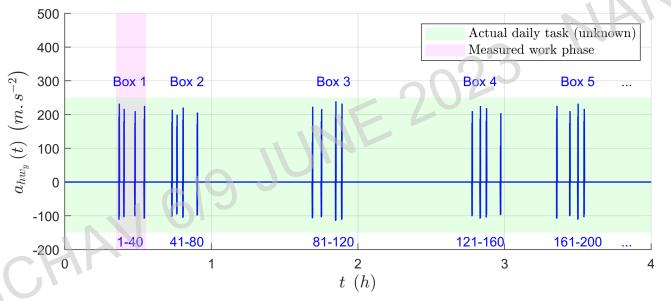
- 2.2. Nail gun
 - ALSAFIX C38/130 A1, 5.8 kg
 - 125 mm nails
 - Accelerometer placed on the auxiliary handle




4 soles per box




• 2.2. Nail gun



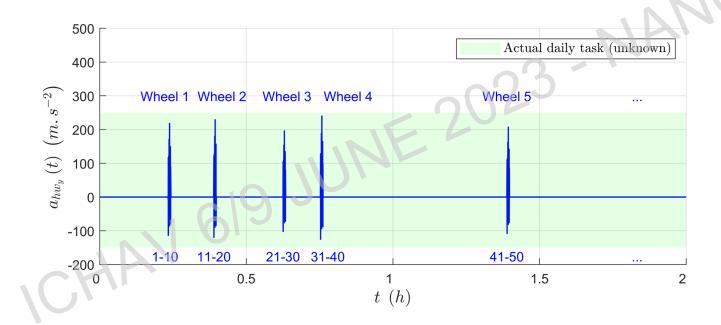
• 2.2. Nail gun

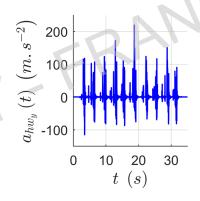
Measured (sample Pink zone)	Available information
$a_{hv_{sample}}$	$T_{estimate}$
$A(8)_{sample} \ R_{sample}$	$R_{estimate}$

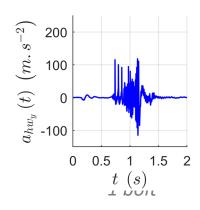
• 2.2. Nail gun

Con	ventional me	thod	7.5	Alternati	ve method	
$a_{hv_{sample}}$ $(m. s^{-2})$	T _{estimate} (s)	$A(8)_{estimate}$ $(m. s^{-2})$	$R_{estimate}$ $(-)$	R _{sample} (–)	$A(8)_{sample}$ $(m. s^{-2})$	$A(8)_{estimate}$ $(m. s^{-2})$
2.7	7200	1.3	200 nails (5 boxes)	40 nails (1 box)	0.400	1.0

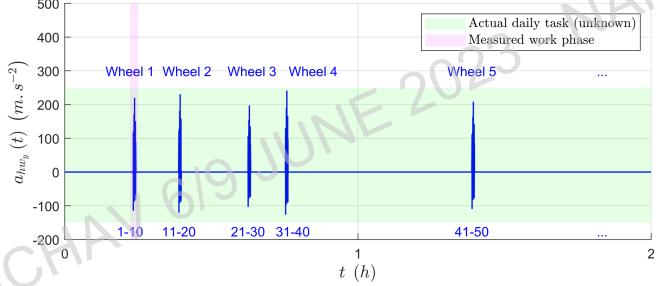
- 2.3. Impact wrench
 - Chicago Pneumatic CP7783
 - 8.4 kg
 - 600 N.m torque socket
 - Accelerometer placed on the auxiliary handle






• 2.3. Impact wrench

1 wheel - 10 bolts



• 2.3. Impact wrench

Measured (sample Pink zone)	Available information
$a_{hv_{sample}}$	$T_{estimate}$
$A(8)_{sample} \ R_{sample}$	$R_{estimate}$

• 2.3. Impact wrench

terial and	l method	ls				
2.3. Impact wrench					CRA	MOL
Cor	nventional me	thod	173 N	Alternativ	ve method	
$a_{hv_{sample}}$ $(m. s^{-2})$	$T_{estimate}$ (s)	$A(8)_{estimate}$ $(m. s^{-2})$	$R_{estimate}$ $(-)$	R_{sample} (-)	$A(8)_{sample}$ $(m. s^{-2})$	$A(8)_{estimate}$ $(m. s^{-2})$
12.9	1800	3.2	150 bolts (15 wheels)	10 bolts (1 wheel)	0.430	1.8

3. Results

• 3.1. Method comparison

	Conventional method $A(8)_{estimate} \ ig(m.s^{-2}ig)$	Alternative method $A(8)_{estimate}$ $(m. s^{-2})$	Actual working task $A(8)$ $ig(m.s^{-2}ig)$
Assault riffle	1.1	0.7	0.7
Nail gun	1.3	1.0	1.1
Impact wrench	3.2	1.8	1.8

4. Discussion and conclusions

- 4.1. Discussion
 - Field measurement conditions are not always controlled.
 - The sample is not always representative of the real working task.
 - When possible, the estimation of the total number of shocks is easier to perform and more accurate than the estimation of T.

4. Discussion and conclusions

- 4.2. Conclusions
 - The alternative method is often more reliable than the usual one.
 - It also facilitates the implementation of technical prevention solutions.
 - It should be preferred for single and repeated shocks.

Thank you for your attention

Frédéric MAITRE

frederic.maitre@assurance-maladie.fr

Maël AMARI mael.amari@inrs.fr

